Wrapper-Filter Feature Selection Algorithm Using a Memetic Framework
نویسندگان
چکیده
This correspondence presents a novel hybrid wrapper and filter feature selection algorithm for a classification problem using a memetic framework. It incorporates a filter ranking method in the traditional genetic algorithm to improve classification performance and accelerate the search in identifying the core feature subsets. Particularly, the method adds or deletes a feature from a candidate feature subset based on the univariate feature ranking information. This empirical study on commonly used data sets from the University of California, Irvine repository and microarray data sets shows that the proposed method outperforms existing methods in terms of classification accuracy, number of selected features, and computational efficiency. Furthermore, we investigate several major issues of memetic algorithm (MA) to identify a good balance between local search and genetic search so as to maximize search quality and efficiency in the hybrid filter and wrapper MA.
منابع مشابه
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملMemetic Algorithms for Feature Selection on Microarray Data
In this paper, we present two novel memetic algorithms (MAs) for gene selection. Both are synergies of Genetic Algorithm (wrapper methods) and local search methods (filter methods) under a memetic framework. In particular, the first MA is a Wrapper-Filter Feature Selection Algorithm (WFFSA) fine-tunes the population of genetic algorithm (GA) solutions by adding or deleting features based on uni...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2007